TABLE H-1 SUB-BASINS OF 200 SQUARE MILES OR GREATER IN THE KENTUCKY RIVER BASIN | <u>Sub-basins</u> | Square Miles | |---|--------------| | North Fork of Kentucky | 1,883.0 | | South Fork of Kentucky | 748.0 | | Middle Fork of Kentucky | 559.0 | | Red River | 487.00 | | Dix River | 442.0 | | Elkhorn Creek (at lower Dam Site)
Mile 2.5 | 492.0 | | Eagle Creek | 519.0 | | Station Cam Creek | 217.0 | NOTE: This information is from the waste load allocation for Kentucky and is an output from the 303e River Basin Planning Effort. TABLE H-2 COUNTY AREA IN THE KENTUCKY RIVER BASIN | County | Total Area
(sq. miles) | Area in Basin
(sq. miles) | County | Total Area
(sq. miles) | Area in Basin
(sq. miles) | |-----------|---------------------------|------------------------------|------------|---------------------------|------------------------------| | Anderson | 206 | 70 | Lee | 210 | 210 | | Bell | 370 | 1.5 | Leslie | 409 | 409 | | Boy1e | 183 | 80 | Letcher | 339 | 290 | | Breathitt | 494 | 494 | Lincoln | 340 | 187 | | Carroll | 130 | 86 | Madison | 446 | 446 | | Clark | 259 | 130 | Menifee | 210 | 65 | | Clay | 474 | 430 | Mercer | 256 | 102 | | Estill | 260 | 260 | Montgomery | 204 | 35 | | Fayette | 280 | 280 | 0wen | 351 | 351 | | Franklin | 211 | 211 | 0ws1ey | 197 | 197 | | Garrard | 236 | 236 | Perry | 341 | 341 | | Grant | 249 | 249 | Powel1 | 173 | 173 | | Harlan | 469 | 70 | Rockcastle | 311 | . 60 | | Henry | 289 | 260 | Scott | 284 | 284 | | Jackson | 337 | 135 | She1by | 383 | 70 | | Jessamine | 177 | 177 | Trimble | 146 | 60 | | Knott | 356 | 255 | Wolfe | 227 | 227 | | Knox | 373 | 38 | Woodford | 193 | 193 | | | | | Total | | 7,033 | SOURCE: Rand McNally Standard Reference Map and Guide of Kentucky, 1972. TABLE H-3 SLOPES AND ELEVATIONS OF PRINCIPAL TRIBUTARIES IN THE KENTUCKY RIVER BASIN | STREAM | LENGTH
(Miles) | Max. El.
(m.s.l.) | Min. El.
(m.s.1.) | AVERAGE SLOPE
(ft./miles) | |------------------------------|-------------------|--------------------------|----------------------|------------------------------| | N. Fork of Kentucky River | 148.1 | 1,109 | 634 | 3.21 | | M. Fork of Kentucky River | 43.3 | 757 | 627 | 3.00 | | S. Fork of Kentucky River | 85.0 | 1,250 | 634 | 7.25 | | Goose Creek | 21.8 | 830 | 754 | 3.49 | | Troublesome Creek | 42.4 | 1,004 | 720 | 6.69 | | Red River | 59.5 | 713 | 566 | 2.47 | | Otter Creek | 13.1 | 880 | 566 | 23.97 | | Boone Creek | 7.2 | 780 | 549 | 32.08 | | Silver Creek | 39.2 | 936 | 531 | 10.33 | | Paint Lick Creek | 32.0 | 920 | 531 | 12.16 | | Hickman Creek | 31.5 | 910 | 514 | 12.57 | | Jessamine Creek | 13.1 | 860 | 519 | 26.03 | | Clarks Run Creek | 10.4 | 920 | 750 | 16.35 | | Dix River
H.W. to mp 34.6 | 23.2
0.0 s1 | 822
ope from mp 34.60 | 750
to mouth incl | 3.27
uding reservoir | | Glenns Creek | 12.5 | 830 | 469 | 28.88 | | Elkhorn Creek | 90.6 | 950 | 454 | 5.48 | | Drennon Creek | 16.6 | 800 | 428 | 22.41 | | Stephens Creek | 20.9 | 920 | 598 | 15.41 | | Clarks Creek | 15.4 | 791 | 586 | 13.31 | | Eagle Creek | 81.4 | 737 | 428 | 3.80 | | Little Eagle Creek | 12.6 | 914 | 737 | 14.05 | NOTE: This information is from the waste load allocation for Kentucky and is an output from the 303e River Basin Planning Effort. TABLE H-5 LAKES IN THE KENTUCKY RIVER BASIN | Location | County | Surface Area
(Acres) | Capacity
Acre-Feet | |--------------------------------------|-----------------------|-------------------------|-----------------------| | Fishpond Lake | Letcher County | 31 | 1,037 | | Taylor Fork Lake | Madison County | 169 | 3,572 | | Corinth Lake | Grant County | 96 | 1,612 | | Bullock Pen | Grant County | 134 | 2,464 | | Elmer Davis Lake | Owen County | 149 | 3,151 | | Pan Bowl Lake | Jackson County | 98 | 1,298 | | Lexington Reservoirs | Fayette County | 408 | 3,850 | | Mill Creek Lake | Wolfe County | 41 | 1,049 | | Elk Lake | Owen County | 207 | 2,654 | | Herrington Lake | Mercer County | 2,940 | 230,500 | | Kentucky Utility
Fly Ash Disposal | Carroll County | 89 | 2,491 | | Lake Vega | Madison County | 132 | 1,557 | | Boltz Lake | Grant County | 92 | 2,168 | | Total | | 4,586 | 257,403 | | <u>Federal</u> | | | | | Buckhorn Lake | Leslie & Perry County | 1,230 | 21,800 | | Carr Fork Lake | Knott County | <u>710</u> | 6,480 | | Total | | 1,940 | 28,280 | | Grand Total | | 6,526 | 285,683 | SOURCE: Kentucky Department for Natural Resources and Environmental Protection, Division of Water Resources. Table H-6 POPULATION AND FACILITY GRANT STATUS IN THE KENTUCKY RIVER BASIN | County - Cities | Total
Population | Population
in Basin | Project
Type | Comments | |---|---------------------|-----------------------------|-------------------|------------------------| | Anderson | 9,358 | 2,000 | | | | Bell | 31,087 | 700 | | | | Boyle
Danville
Junction City | 21,090 | 16,800
12,400
1,046 | Step 1
Step 1 | Pending
Pending | | Breathitt
Jackson | 14,221 | 14,221
1,887 | Step 1 | Pending | | Carroll
Carrollton | 8,523 | 7,000
3,884 | Step 1 | Pending | | Clark | 24,090 | 5,300 | | | | Clay
Manchester | 18,481 | 16,800
1,664 | Step l | Pending | | Estill
Irvine-Ravenna | 12,752 | 12,752
3,702 | Step 1 | Pending | | Fayette
Lexington-Main
Lexington-West H | 174,323
ickman | 174,323
73,500
43,500 | Step 1
Step 1 | | | Franklin
Frankfort | 34,481 | 34,481
22,700 | | | | Garrard
Lancaster | 9,457 | 9,457
3,230 | Step 1 | | | Grant
Williamstown
Dry Ridge | 9,999 | 7,700
2.063
1,100 | Step 1
Step 11 | No Sewers | | Harlan | 37,370 | 3,800 | | | | Henry
New Castle
Pleasureville | 10,910 | 7,200
755
747 | Step 1
Step 1 | Pending, No Sewers | | Jackson | 10,005 | 3,900 | | | | ✓ Jessamine
Nicholasville
Wilmore | 17,430 | 17,430
5,829
3,466 | Step 1 | Pending
No Planning | | County - Cities | Total
Population | Population
in Basin | Project
Type | Comments | |---|---------------------|---|--------------------------------------|--| | Knott
Hindman | 14,698 | 10,800
808 | Step 1 | Pending | | Knox | 23,689 | 1,800 | | | | Lee
Beattyville | 6,587 | 6,587
923 | Step 1 | Pending | | Leslie
Hyden | 11,623 | 11,623
482 | | No Planning | | Letcher
Whitesburg
Neon-Fleming | 23,165 | 17,900
1,137
1,178 | Step 1
Step 1 | Pending
No Sewers | | Lincoln
Stanford
Crab Orchard
Hustonville | 16,633 | 10,900
2,474
861
413 | Step 1
Step 1
Step 1 | No Sewers
No Sewers | | Madison
Berea #1
Berea #2
Richmond #1
Richmond #2 | 42,730 | 42,730
4,600
2,300
10,100
7,700 | Step 1
Step 1
Step 1
Step 1 | Pending
Pending
Pending
Pending | | Menifee | 1,100 | | | | | Mercer
Burgin | 15,960 | 3,700
1,002 | Step 1 | Pending-No Sewers | | Montgomery | 15,364 | 1,700 | | | | Owen
Owenton | 7,470 | 7,470
1,280 | | No Planning | | Owsley
Booneville | 5,023 | 5,023
126 | | No Planning | | Perry
Hazard
Vicco | 26,259 | 26,259
5,459
377 | Step 1 | No Planning
Pending | | Powell
Stanton
Clay City | 7,704 | 7,704
2,037
938 | Step 1
Step 1 | Pending
Pending | | Rockcastle Brodhead | 12,305 | 2,700
769 | | No Planning | TABLE H-6 (continued | County - Cities | Total
Population | Population
in Basin | Project
Type | Comments | |---|---------------------|--------------------------|--------------------|---| | Scott | 17,948 | 17,948 | | | | Georgetown
Stamping Ground
Sadieville | | 8,629
411
272 | Step 1
Step III | Pending
No Sewers
No Planning-No Sewer: | | She1 by | 18,999 | 2,600 | | | | Trimble | 5,349 | 1,900 | | | | Wolfe
Campton | 5,669 | 5,669
419 | Step 1 | Pending | | Woodford
Versailles
Midway | 14,434 | 14,434
5,679
1,278 | Step III
Step l | Step 1 Pending
Pending | Source: Kentucky Department for Natural Resources and Environmental Protection, Division of Water Quality. ### TABLE H-7 Organic Loads Affecting Streams in the Kentucky River Basin Length of streams to which treated | organic loads are discharged | 868 | |--|-----| | Stream length for which dissolved oxygen is predicted to be below 5 mg/l during periods of low flow | 150 | | Stream length for which dissolved oxygen is predicted to be below 5 mg/l during periods of low flow due to Municipal Discharges Industrial Discharges | 124 | | Other Discharges | 26 | NOTE: This information is from the waste load allocation for Kentucky and is an output from the 303e river basin planning effort. The values indicated the stream miles in which the dissolved oxygen is predicted to be less than 5 mg.l when the stream flow is less than the once in ten year, seven day, low flow. Table H-8 LOCKS AND DAMS ON THE KENTUCKY RIVER | Lock
No. | Miles
Above Mouth | Length of Pool
Above Dam (miles) | |-------------|----------------------|-------------------------------------| | 1 | 4.0 | 27.0 | | 2 | 31.0 | 11.0 | | 3 | 42.0 | 23.0 | | 4 | 65.0 | 17.2 | | 5 | 82.2 | 14.0 | | 6 | 96.2 | 20.8 | | 7 | 117.0 | · 22.9 | | 8 | 139.9 | 17.6 | | 9 | 157.5 | 18.9 | | 10 | 176.4 | 24.6 | | 11 | 201.0 | 19.9 | | 12 | 220.9 | 19.0 | | 13 | 239.9 | 9.1 | | 14 | 249.0 | - | Navigation Charts U. S. Army Corps of Engineers Louisville District Table H-9 Water Quality Data for Kentucky River Basin | Station | #0bs. | Mean | S | Max. | Min. | Beg.
Date | End
Date | |--|---|---|----------------------------------|--|---------------------------------|--|--| | | pH Spec | ific Unit | s, Ken | tucky (K | y. Std. |) 6 to 9 | | | N. Fk. Kentucky R. at
Hazard
Red R. at Pine Ridge | 276
32
49 | 7.2
7.4
7.2 | 0.7
1.0
0.3 | 9.5
9.5
7.9 | 3.8
4.4
6.7 | 10-62
1-73
4-69 | 6-74
6-74
7-74 | | Ky. River, Lock 4 at
Frankfort
Eagle Creek at Glencoe | 17
285
14
42 | 7.4
7.5
7.6
7.5 | 0.4
0.4
0.4
0.4 | 7.9
8.4
8.1
8.2
8.2 | 6.7
6.2
6.9
5.2
5.2 | 1-73
10-59
1-73
1-62
2-73 | 7-74
9-73
9-73
7-74
7-74 | | | 16 7.5 0.7 8.2 5.2 2-73 7-74 Conductivity Micromhos, Ky. Std. 800 micro mhos | | | | | | | | N. Fk. Kentucky R. at
Hazard
Red R. at Pine Ridge | 310
34
54
22 | 460
620
110
120 | 360
880
60
90 | 3,860
3,860
390
390 | 21.4
21.4
58
58 | 10-62
1-73
4-69
1-73 | 6-74
6-74
11-74 | | Ky. River, Lock 4 at
Frankfort
Eagle Creek at Glencoe | 376
17
49
23 | 250
230
350
350 | 100
50
120
150 | 675
320
617
617 | 76
145
17
17 | 10-59
1-73
1-62
2-73 | 6-74
6-74
11-74
11-74 | | | | ed Solids
Std. 500 | | | oer lite | r (mg/1) | | | N. Fk. Kentucky R. at
Hazard
Red River at Pine Ridge
Ky. River, Lock 4 at | 15
10
50
18
5 | 570
610
68
78
330 | 630
780
34
53
37 | 2,190
2,190
211
211
372 | 21
21
38
38
279 | 10-68
3-74
4-69
1-73
12-68 | 4-74
4-74
11-74
11-74
10-72 | | Frankfort
Eagle Creek at Glencoe | 46
23 | 210
210 | 70
9 0 | 364
364 | 27
27 | 8-70
2-73 | 11-74
11-74 | | | Alkalin | ity mg/l, | No Sta | andard | | | | | N. Fk. Kentucky R. at Hazard Red R. at Pine Ridge Ky. River, Lock 4 at Frankfort Eagle Creek at Glencoe | 177
32
53
21
218
14
47 | 55
82
32
40
65
67
140 | 42
71
31
46
19
19 | 205
205
193
193
128
92
217 | 0
9
9
16
34
7 | 11-64
1-73
4-69
1-73
10-59
1-73
8-70 | 6-74
6-74
11-74
11-74
9-73
9-73 | | Eagle of the at a tellooc | 23 | 140 | 56 | 217 | 7 | 2-73 | 11-74 | Table H-9 | Station | #Obs. | Mean | S | Max. | Min. | Beg.
Date | End
Date | |---|--|--|---|---|--|--|---| | | | | | | 120 modei | rately ha | ırd, | | N. Fk. Kentucky R. at
Hazard
Red River at Pine Ridge
Ky. River, Lock 4 at
Frankfort
Eagle Creek at Glencoe | 121-16
267
30
50
18
370
14
49
23 | 80 hard,
160
190
47
59
99
100
180 | over 110
180
34
54
29
23
63
80 | 180 very
726
710
180
180
192
140
300 | hard
5
18
18
21
63
8 | 10-62
1-73
4-69
1-73
10-59
1-73
1-62
2-73 | 4-74
4-74
11-74
11-74
9-73
9-73
11-74 | | | | Platinu | | | Units, | | | | N. Fk. Kentucky River at
Hazard
Red River at Pine Ridge
Ky. River, Lock 4 at | 131
10
46
13
138 | E.P.A. 9
15
11
9 | 8.4
11
14
7.5
7.8 | 50
40
70
30
50 | 0
3
0
0 | 10-62
3-74
4-69
1-73
10-59 | 4-74
4-74
11-74
11-74
10-72 | | Frankfort
Eagle Creek at Glencoe | 45
20 | 51
61 | 65
88 | 300
300 | 0
0 | 1-62
2-73 | 11-74
11-74 | | | Sodium | mg/1, N | o Stand | dard | | | | | N. Fk. Kentucky R. at | 19 | 95 | 160 | 570 | 0.5 | 7-65 | 4-74 | | Hazard
Red River at Pine Ridge
Ky. River, Lock 4 at | 50
18
17 | 3
4
20 | 2
3
18 | 14
14
56 | 1.4
1.4
4.1 | 4-69
1-73
10-59 | 11-74
11-74
10-72 | | Frankfort
Eagle Creek at Glencoe | 48
23 | 5
5 | 2.2 | 9.1
9.1 | 0.8
0.8 | 1-62
2-73 | 11-74
11-74 | | | Potassi | um mg/l, | No Sta | andard | | | | | N. Fk. Kentucky River at | 16 | 7.5 | 7.7 | 29 | 0.9 | 7-65 | 4-74 | | Hazard
Red River at Pine Ridge
Ky. River, Lock 4 at
Frankfort
Eagle Creek at Glencoe | 50
18
17
4
48
23 | 1.9
1.9
2.6
2.1
3.2
3.2 | 0.7
0.8
0.8
0.7
1.2 | 3.8
3.6
4.6
2.9
5.8
5.8 | 0.8
0.8
1.6
1.4
1.1 | 4-69
1-73
10-59
4-73
1-62
2-73 | 11-74
11-74
10-72
10-74
11-74 | | | Chlori | de mg/l, | Prop. | E.P.A. | Std. 250 | mg/l | | | N. Fk. Kentucky River at
✓ Hazard
Red River at Pine Ridge
Ky. River, Lock 4 at | 267
30
50
18
272 | 19
104
4
4
20 | 91
260
1.9
1.9 | 1,000
1,000
8
7.6
130 | 0
1.5
1.1
1.1 | 10-62
1-73
4-69
1-73 | 4-74
4-74
11-74
11-74
9-73 | | Frankfort | 14 | 9 | 5.4 | 20 | 2.6 | 1-73 | 9-73 | Table H-9 | Station | #0bs. | Mean | S | Max. | Min. | Beg.
Date | End
Date | |--|-----------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------------|----------------------------------| | Eagle Creek at Glencoe | 49
23 | 8
6 | 11
2.8 | 80
10 | 1
1.9 | 1-62
2-73 | 11-74
11-74 | | | Sulfate | mg/1, | Prop. | E.P.A. | Std. 250 | mg/l | | | N. Fk. Kentucky River at
Hazard
Red River at Pine Ridge | 268
32
55
21 | 146
87
16
17 | 99
84
5.6
8.2 | 646
410
43
43 | 0.9
0.9
7.9
7.9 | 10-62
1-73
4-69
1-73 | 6-74
6-74
11-74
11-74 | | Ky. River, Lock 4 at
Frankfort
Eagle Creek at Glencoe | 272
14
49
23 | 34
36
43
46 | 13
10
20
25 | 89
57
100
100 | 13
22
0.3
0.3 | 10-59
1-73
1-62
2-73 | 9-73
9-73
11-74
11-74 | | | Nitrate | - N mg |]/1, Pi | rop. E.P | .A. Std. | 10 mg/1 | | | N. Fk. Kentucky River at
Hazard | 43 | 0.6 | 0.7 | 4 | 0 | 4-72 | 4-74 | | Red River at Pine Ridge Ky. River, Lock 4 at Frank- fort Eagle Creek at Glencoe | 15
34
14
18 | 0.2
0.7
0.7
0.4 | 0.1
0.2
0.2
0.3 | 0.5
1.1
1.1
0.8 | 0.02
0.4
0.4
0 | 6-72
4-72
1-73
10-72 | 8-74
9-73
9-73
7-74 | | | | | | | Std. 10 | | | | N. Fk. Kentucky River at
Hazard | 28 | 0.6 | 0.8 | 3.7 | 0.1 | 10-68 | 4-74 | | Red River at Pine Ridge | 50
18 | 0.2 | 0.3
0.5 | 2 2 | 0 | 4-69
1-73 | 11-74
11-74 | | Ky. River, Lock 4 at
Frankfort
Eagle Creek at Glencoe | 18
54
49
23 | 0.2
0.6
0.3
0.2 | 0.1
1.3
0.2
0.1 | 0.4
0.9
1.1
0.5 | 0.1
0.1
0.1
0.1 | 10-59
1-70
1-62
2-73 | 10-72
11-74
11-74
11-74 | | Kentucky R. at Lexington | 53 | 0.4 | 0.3 | 0.9 | 0 | 3-69 | 11-74 | | | Calcium | - Micr | rograms | per li | ter (ug/1 |) No St | d. | | N. Fk. Kentucky River at
Hazard
Red River at Pine Ridge
Kentucky River, Lock 4 at | 15
50
18
19 | 50
12
16
37 | 37
10
16
11 | 131
57
57
57 | 1.3
3.5
3.5
21 | 10-68
4-69
1-73
10-59 | 4-74
11-74
11-74
10-72 | | Frankfort
Eagle Creek at Glencoe | 48
23 | 58
58 | 20
25 | 88
88 | 2.7
2.7 | 1-62
2-73 | 11-74
11-74 | Table H-9 | Station | #Obs. | Mean | S | Max. | Min. | Beg.
Date | End
Date | | | |---|--------------------------------|------------------------------------|--------------------------------------|------------------------------|--------------------------|--|--|--|--| | | Magnesium mg/l, No Standard | | | | | | | | | | N. Fk. Ky. River at Hazard
Red River at Pine Ridge
Ky. River, Lock 4 at | 15
50
18
19 | 28
4
4.8
7.5 | 31.3
3.0
4.9
3.4 | 110
23
23
14 | 0.4
2.0
2.0
3.1 | 10-68
4-69
1-73
10-59 | 4-74
11-74
11-74
10-72 | | | | Frankfort
Eagle Creek at Glencoe | 48
23 | 8.4
9.1 | 4.0
5.0 | 20
20 | 0.4
0.4 | 1-62
2-73 | 11-74
11-74 | | | | Cadmium ug/1, micrograms per liter, Ky Std. 100 ug/1 | | | | | | | | | | | N. Fk. Kentucky River at
Hazard
Ky. River, Lock 4 at
Glencoe
Eagle Creek at Glencoe
Ky. River at Lexington | 12
6
13
54
4
53 | 0.3
0.7
0
1
1.8
0.6 | 1.2
1.6
0
0.9
2.1
0.5 | 4
0
5
4
1 | 0
0
0
0
0 | 10-63
4-74
11-62
1-70
3-74
3-69 | 6-74
6-74
6-74
11-74
6-74
11-74 | | | | Manganese ug/l, micrograms per liter,
Prop. Std. 50 ug/l | | | | | | | | | | | N. Fk. Kentucky River at
Hazard | 5 | 32 | 31 | 83. | 0 | 4-74 | 4-74 | | | | Red River at Pine Ridge
Eagle Creek at Glencoe | 26
29 | 26
29 | 21
36 | 67
180 | 0
0 | 10-71
10-71 | 11-74
11-74 | | | | | Iron u | ıg/l, micr | ograms | per lit | er, E.P. | A. Std. | 300 ug/1 | | | | N. Fk. Kentucky River at
Hazard
Red River at Pine Ridge
Ky. River, Lock 4 at
Frankfort | 32
11
27
71 | 199
434
154
45 | 426
666
118
62 | 1,800
1,800
480
320 | 0
10
0
0 | 12-64
3-74
10-71
10-60 | 4-74
4-74
11-74
9-65 | | | | Eagle Creek at Glencoe | 31 | 96 | . 75 | 280 | 0 | 10-71 | 11-74 | | | | | | um ug/1, m | | | | | | | | | N. Fk. Ky. River at Hazard
Ky. River, Lock 4 at | 6
52 | 1.7
1.5 | 4.1
1.6 | 10
7 | 0 | 4-74
1-70 | 6-74
11-74 | | | | Frankfort
Eagle Creek at Glencoe
Ky. River at Lexington | 4
53 | 0.3
1.5 | 0.5
1.5 | 1 6 | 0 | 3-74
3-69 | 6-74
11-74 | | | | Lead ug/1, micrograms per liter, Ky. Std. 50 ug/1 | | | | | | | | | | | N. Fk. Ky. R. at Hazard
Ky. R., Lock 4 at Frankfort
Eagle Creek at Glencoe
Ky. River at Lexington | 11
13
50
4
48 | 1.6
1.4
8.4
8 | 4.2
3.2
5.5
16
5 | 14
9
34
32
29 | 0
0
1
0
1 | 10-63
11-62
1-70
3-74
3-69 | 4-74
6-74
11-74
6-74
11-74 | | | Table H-9 | Station | #0bs. | Mea | n S | Max. | Min | Beg.
Date | End
Date | |---|---------|-------|------------|--------|--------|--------------|-------------| | | Silver | ug/1, | micrograms | per | liter, | Ky. Std. | 50 ug/1 | | Ky. River, Lock 4 at | 54 | 0.6 | 0.6 | 3 | 0 | 1-70 | 11-74 | | Frankfort
Kentucky River at Lexingto | 53 | 0.5 | 0.6 | 2 | 0 | 3-69 | 11-74 | | | Arsenic | ug/1, | micrograms | per | liter, | Ky. Std. | 50 ug/1 | | N. Fk. Kentucky River at | 12 | 0.3 | 0.8 | 2
2 | 0 | 10-63 | 6-74 | | Hazard | 6 | 0.7 | 1 | 2 | 0 | 4-74 | 6-74 | | Ky. River, Lock 4 at | 14 | 1.1 | 3.3 | 12 | 0 | 11-62 | 6-74 | | Frankfort | 14 | 0.5 | 0.5 | 1 | 0 | 1-71 | 4-74 | | Eagle Creek at Glencoe | 4 | 1 | 1.2 | 2 | 0 | 3-74 | 6-74 | | Kentucky River at Lexington | 13 | 0.7 | 1.1 | 1 | 0 | 7-71 | 4-74 | #Obs: Total number of observations in period shown. S: Standard Deviation #### THE LICKING RIVER BASIN This report is in three parts. The first is a general basin description, the second describes the water quality, and the third part summarizes the problems and offers some general solutions. ## I. A Description of the Licking River Basin #### A. Geography The Licking River Basin is located entirely within the eastern portion of the Commonwealth of Kentucky. The Licking River rises in southeastern Kentucky and flows northwesterly to its confluance with the Ohio River, opposite Cincinnati, Ohio. The total drainage area of the basin is 3,700 sq. mi. which is approximately 9 per cent of the land area of the state and includes all or portions of 21 counties. The basin is shaped much like an elongated diamond with an axis of about 130 miles and a minor axis of about 60 miles. The main stem is approximately 320 miles long. The basin extends from Covington and Newport, Kentucky in the north, to below Salyersville in the south and from beyond Flemingsburg and Morehead in the east to Winchester in the west. #### B. Topography The Licking River drainage area is entirely south of the glaciated portion of the Ohio River Basin and physical features of the basin are generally the result of geological strata exposed by differential erosion following the broad uplift of the Paleozoic Era known as the Cincinnati Arch. The Licking River Basin exhibits four distinct physiographic types. The river rises in the Eastern Coal Fields of the Kanawha section of the (1) Appalachian Plateau, which has narrow ridges and crooked steep sided valleys. It flows through the (2) Knobs and the (3) Outer Blue Grass Regions. The South Fork drains a portion of the (4) Inner Blue Grass region of the Interior Low Plateau. The Knobs is an area of conical hills with rather broad valleys. The Outer Blue Grass is rather gently rolling except where the streams have entrenched themselves into deep valleys. The Inner Blue Grass region is gently rolling upland. There are no natural lakes in the basin. The generally flat topography of the Licking River Basin allows little reaeration due to the slope of the Reaeration is the replacement of dissolved oxygen from the atmosphere streams. which was used to stabilize organic matter. The river courses from an elevation of 998 ft. mean sea level (m.s.l.) at its headwaters to an elevation of 420 ft. m.s.l. at the confluence with the Ohio River for some 320 miles. The main stem has an average slope of approximately 1.9 ft./mi. Over the low half of the river the average slope is 1.3 ft./mi. The slopes of the tributaries average between 1 to 2 ft./mi. for the North and South Forks and into the hundreds of feet per mile in some of the smaller tributaries. A slope in the range of 0 to 2 ft./mi. is considered low, 2 to 6 ft./mi. is moderate and 6 to 10 ft./ mi. is high as it relates to the effect of reaeration. #### C. Geology The major geologic influence on the quality of the water in the Licking River Basin is the occurance of limestone throughout the basin. Limestone contributes calcium and magnesium through solution from the soil and rocks which imparts hardness to the water. The coal field does not appear to be having a significant effect on water quality at this time. The groundwater resources are limited by the low yield of the aquifers in the basin, thus restricting the use of groundwater as a major source of water supply. ### D. Hydrology During the late summer and early autumn portions of the Licking River have flows of less than 5 cubic feet per second (Table I-2). Such low flows severly limit the capacity of a stream to maintain the standard of 5 mg/l of dissolved oxygen. Cave Run Reservoir near Farmers, Kentucky, 174 miles from the mouth, was built to store 47,000 acre feet of water for hood control, water supply recreation and low flow augmentation. Cave Run Reservoir is designed to augment the low flow in the Licking River by 50 cubic feet per second (c.f.s.). Table I-2 Surface Flow in the Licking River Basin | Station | Period of
Record | Drainage
Area | Average Flow | Maximum Flow | Minimum Flow | 7 Day 10 Yr.
Low Flow | |---|---------------------|------------------|---------------------------------------|--|------------------------------------|--------------------------| | Licking River at
Farmers, Kentucky | 36 yr. | 827 sq. mi. | 1,060 cfs, <u>1.3 cfs</u> sq. m1. | 24,000 cfs, 29 cfs
sq. mi. | 0.7 cfs, <u>0.0 cfs</u> sq. mi. | 54.4 cfs | | South Fork Licking
River at Cynthiana,
Kentucky | `
36 yr. | 621 sq. mi. | 754 cfs, <u>1.2 cfs</u>
sq. mi. | 35,300 cfs, <u>56.8 cfs</u> sq. mi. | 0.3 cfs, <u>0.0 cfs</u>
sq. mi. | .9 cfs | | Licking River at
Catawba, Kentucky | 48 yr. | 3,300 sq. mi. | 4,119 cfs, <u>1.2 cfs</u>
\$q. mi. | 95,000 cfs, <u>28.8 cfs</u>
sq. mi. | 2.5 cfs, <u>0.0 cfs</u>
sq. mi. | 62 cfs | Information is from the "Surface Water Records" published by the United States Geological Survey. The 7-day - 10-year low flow information was taken from the Waste Load Allocation, a part of the Kentucky 303e River Basin Continuing Planning Process. #### E. Population The population of the Licking River Basin was 211,000 in 1970. The distribution throughout the basin is fairly uniform except for a major population center in Campbell and Kenton Counties, composing a part of the SMSA of Cincinnati, Ohio. Although Campbell and Kenton Counties don't discharge treated sewage into the Licking River, combined sewer overflow and street run-off do affect water quality in the lower Licking River. The total urban population of the basin is 106,000 or 50 per cent of the whole basin. The other 50 per cent is in rural areas. #### II. Basin Water Quality The water quality of the Licking River Basin has been determined by using both a computer model and data collected at three monitoring stations. These sources give an overall picture of the basin which shows problems caused by sewage treatment plant effluent and erosion. ### A. Description of Sampling Stations The Salyersville monitoring station, the farthest upstream of the three stations, is on the Licking River 1.2 miles west of Salyersville and 266 miles from the mouth. The drainage area at this point is 140 sq. mi. The second station, at McKinneysburg, on the Licking River is 64 miles from the mouth and has a drainage area of 2,300 sq. mi. The last station is at the Kenton County water intake on the Licking River approximately 2 miles from the mouth at the Ohio River. The drainage area at this station is approximately 3,700 sq. mi. #### B. General Chemical Water Quality The chemical composition of water is best defined by grouping dissolved elements which compose the total dissolved solids. By examining the relationships of groups of chemicals, the type of water whether hard or soft, salty, acid or high in sulfates reflects the mix of surface and groundwater. The chemical characteristics of a stream when viewed over a long period of time is primarily from surface water. The type of rock formation and soils which the surface water contacts causes this predominate chemical characteristic. The contribution of groundwater, which is generally higher in dissolved solids than surface water, can be shown by selecting the low flow period for data analyses. The general character of waters in Kentucky is of moderate hardness caused by calcium and magnesium salts. The influence of mining activities are clearly indicated when the sulfate content increases to a higher level than the bicarbonate content, and the pH is on the acid side, below pH 5.5. MAXIMUM, AVERAGE, and MINIMUM concentrations of dissolved constituents, Licking River at Salyersville Period of Record: 1-73 to 11-74 MAXIMUM, AVERAGE, and MINIMUM concentrations of dissolved constituents, Licking River at Salyersville Period of Record 5-65 to 11-74 MAXIMUM, AVERAGE, and MINIMUM concentrations of dissolved constituents, Licking River at McKinneysburg Period of Record 10-59 to 10-73 MAXIMUM, AVERAGE, and MINIMUM concentrations of dissolved constituents, Licking River at McKinneysburg Period of Record: 1-73 to 10-73 Oil field operations, when brine is encountered, are reflected by changes in sodium and chloride contents of the water. For Kentucky water, the influence is pronounced when either chloride or sodium exceeds 20-25 parts per million as an average value. The two sampling stations were used to depict the general chemical water quality for the Licking River basin reflect two different situations on the river. Salyersville was selected to determine the effect of coal mining on water quality. This station is near the headwaters and above Cave Run Reservoir, and shows a wide variation in chemical quality partly due to the relatively small drainage area. That area is totally within the eastern coal field and fluctuations at the Salyersville station indicate the effects of coal mining and oil field operations on water quality. The effect of coal mining and oil field productions is illustrated principally in Figure I-2. The extreme variation in all parameters in comparing the average to the maximum indicates the influence of sporadic discharges which impacts water quality primarily at low flow periods. The production of coal in the Licking River Basin is low as compared to the coal reserves. Oil field production is primarily limited to recharged well production which is limited. Both of these developments reflect the primary influence of water quality, particularly at times of low flow. Since the average values are much as would be expected without oil or coal production. Figure I-2 indicates that the water is approximately an average type water when looking at the average values. McKinneysburg, the other station was selected to indicate general chemical water quality, of the majority of the drainage basin (62%) and the effects of Cave Run Reservoir. The water is classified as soft, moderately hard, hard, and very hard due to the concentration of certain ions, primarily calcium and magnesium. The range of hardness is 121 mg/l + 180 mg/l with an average of 136 which is a hard water. The impact on water quality from Cave Run Reservoir at McKinneysburg is clearly illustrated by comparing the graphs of McKinneysburg and Salyersville. All parameters decrease at McKinneysburg which demonstrates the effectiveness of water reservoir impoundments for quality control of the general chemical quality of water and the ability of a reservoir to iron out or stabilize imparted chemical quality from the exploration of mineral resources such as coal and iron field developments. # C. Trace Chemical Water Quality Trace elements (under 5 mg/l) are separated from the general chemical background of this report because of their influence on human health. Generally, these materials are "heavy" metals, which in sufficient concentrations have a toxic or otherwise adverse effect on human and animal or plant life. Levels for many of these elements have been established for years in the Drinking Water Standards and more recently through the State-Federal Water Quality Standards. The trace chemicals results were from samplings at the Kenton County water district and in the Licking River Basin the water quality falls within the Kentucky-Federal Water Quality Standards. # D. Waste Load Effects on Water Quality Biochemical degradable waste impost a load on the dissolved oxygen resources of a stream. Such waste loads are considered to have an adverse effect on water quality when they cause the dissolved oxygen concentration of the water to drop below the Kentucky water quality standard of 5.0 mg/l. Approximately 1,000 miles of stream length were studied using a model to determine waste load allocations. The model was developed in the Kentucky Continuing Planning process for River Basin Management Planning. Using this model it was determined that approximately 384 miles are affected by treated wastewater. Of the 384 miles 51 miles are affected by industry, 90 miles by municipal sewage treatment plants and 243 miles are affected by other sources such as schools, trailer parks, motels, etc.